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Abstract 

Background: In recent years, several hundred autism spectrum disorder (ASD) implicated genes have been discov‑
ered impacting a wide range of molecular pathways. However, the molecular underpinning of ASD, particularly from 
the point of view of ‘brain to behaviour’ pathogenic mechanisms, remains largely unknown.

Methods: We undertook a study to investigate patterns of spatiotemporal and cell type expression of ASD‑impli‑
cated genes by integrating large‑scale brain single‑cell transcriptomes (> million cells) and de novo loss‑of‑function 
(LOF) ASD variants (impacting 852 genes from 40,122 cases).

Results: We identified multiple single‑cell clusters from three distinct developmental human brain regions (ante‑
rior cingulate cortex, middle temporal gyrus and primary visual cortex) that evidenced high evolutionary constraint 
through enrichment for brain critical exons and high pLI genes. These clusters also showed significant enrichment 
with ASD loss‑of‑function variant genes (p < 5.23 ×  10–11) that are transcriptionally highly active in prenatal brain 
regions (visual cortex and dorsolateral prefrontal cortex). Mapping ASD de novo LOF variant genes into large‑scale 
human and mouse brain single‑cell transcriptome analysis demonstrate enrichment of such genes into neuronal sub‑
types and are also enriched for subtype of non‑neuronal glial cell types (astrocyte, p < 6.40 ×  10–11, oligodendrocyte, 
p < 1.31 ×  10–09).

Conclusion: Among the ASD genes enriched with pathogenic de novo LOF variants (i.e. KANK1, PLXNB1), a subgroup 
has restricted transcriptional regulation in non‑neuronal cell types that are evolutionarily conserved. This association 
strongly suggests the involvement of subtype of non‑neuronal glial cells in the pathogenesis of ASD and the need to 
explore other biological pathways for this disorder.
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Background
Autism spectrum disorder (ASD) is a neurodevelop-
mental disorder of childhood onset whose aetiology is 
principally genetic [1–3] and whose phenotype is highly 
heterogeneous [4, 5]. Even though hundreds of ASD-
implicated genes have been reported [6], no single gene 
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accounts for > 1% of cases [7]. Moreover, the phenotypic 
heterogeneity has confounded gene discovery and an 
understanding of the molecular pathways from ‘brain to 
behaviour’. Recent advances in single-cell technologies 
have enabled the investigation of this molecular hetero-
geneity at the single-cell level. Scrutinising molecular 
subtypes of ASD at the single-cell level will facilitate a 
greater understanding of ASD’s brain mechanisms, and 
their translation into accurate early diagnosis, better 
treatment outcomes and ultimately a precision medicine 
approach to ASD [8–10].

Brain development during the gestational stage intro-
duces several progenitor brain cells that are responsible 
for forming an orderly cellular and mechanistically het-
erogeneous structure. Understanding how different brain 
cell types communicate with each other, and with sensory 
input and functional output, as the basis of cognition 
and perception is a central challenge in neuroscience. 
Although many mutations in ASD-implicated genes are 
reported, and an understanding of their association with 
brain pathways is evolving, a true sense of how cellular 
heterogeneity maps onto ASD molecular subtypes is still 
unknown.

Multiple independent studies have used developing 
human brain transcriptomic data to map ASD candidate 
genes onto spatiotemporal brain regions and molecular 
pathways [9, 11–16], but these studies are mostly limited 
to transcriptomics derived from bulk tissue or involve 
only limited analysis on single-cell transcriptomics [6]. 
In neurodevelopmental disorders, evidence is emerging 
from single-cell data that genes with clinically pathogenic 
mutations functionally impact a subset of primary brain 
cells, with the most consistent evidence converging on 
the neuron and its subtypes rather than non-neuronal 
cells such as astrocytes and oligodendrocytes [17–19]. 
This demonstrates the ability of single-cell OMICs to 
identify the role of particular cell types in the brain in the 
functional mechanisms of human cognition.

The distinct pattern of gene expression at single-cell 
resolution has led to the identification [20] of numer-
ous known and unknown cell types in the human brain. 
Through the integrated analysis of mutational data and 
single-cell transcriptomics, it is possible to map those 
brain cell types that confer a significant risk of disease 
pathophysiology. In this study, we aim to identify the role 
of neuronal and non-neuronal cell types in ASD patho-
genesis by investigating patterns of cell-type expression 
of ASD implicated genes by leveraging large-scale muta-
tion and brain single-cell transcriptome data. Our find-
ings suggest that, among those with ASD, a subgroup 
harbour loss-of-function mutation in genes that are evo-
lutionarily constrained and regulate non-neuronal cell 
types in the brain.

Results
Curation of de novo missense and loss‑of‑function variants 
associated with ASD
We performed a systematic literature search to identify 
variants relevant to ASD. The ASD variant data were 
compiled from 26 studies (Additional file  2: Table  S1) 
where ASD is the main phenotype (Additional file 1: Fig. 
S1). We included articles that used data from whole-
exome, whole-genome and targeted sequencing (Addi-
tional file  1: Fig S1) cohorts (excluding case reports). 
Among the variants, 92.4% (156,688 out of 169,580) were 
reported to be de novo and 0.863% (1463 out of 169,580) 
were rare inherited. Variants in the dataset were classified 
based on their location in the genome. More than 90% of 
variants overlap noncoding DNA sequences reported in 
autism whole genome sequencing projects (e.g. MSSNG, 
ASC), including intergenic regions, introns and untrans-
lated regions. Focusing on variants with direct impact on 
protein structure, de novo exonic and splicing variants 
were found to make up 6.23% (10,565 out of 169,580) of 
our curated data. Among the de novo variants, 62.01% 
(6,651 out of 10,565) were classified as missense (Addi-
tional file  1: Fig. S2, Additional file  2: Table  S2) and 
10.29% (1087 out of 10,565) were loss of function (LOF) 
(splicing (203), nonsense (470), frameshift (414)). We 
mostly focused on de novo LOF variants (impacting 
852 unique genes) (Additional file  2: Table  S2) for our 
downstream analysis due to the consistent association of 
LOF mutations with clinical ASD [21, 22]. Our pathway 
enrichment analysis of all the de novo ASD LOF variant 
genes identified multiple pathways including neuronal 
regulation and differentiation (p < 5.29 ×  10–11), cytoskel-
etal and helicase activity (p < 1.07 ×  10–07), brain develop-
ment (p < 1.76 ×  10–07), synapse and neurotransmission 
(p < 4.07 ×  10–05) (Additional file 1: Figs. S3, S4 and Addi-
tional file 2: Table S3).

Construction of single‑cell clusters and identification 
of genes that are differentially expressed across clusters
We have used single-cell RNAseq data from 3 brain 
regions ACC (Anterior cingulate cortex), MTG (mid-
dle temporal gyrus) and VISP (primary visual cortex) 
derived from 8 neurotypical human tissue Allen Brain 
Atlas donors comprising 32,209 nuclei (ACC-7,283; 
MTG-15,928; VISP-8,998)[20]. RNAseq data were exten-
sively processed and clustered (Additional file  1: Fig. 
S5) (detailed in Methods section) using Seurat v.3 [23], 
resulting in 17, 17 and 18 distinct cell clusters for ACC, 
MTG and VISP, respectively (Fig.  1A). The clusters are 
of varying sizes ranging from 100 to 3364 cells (Addi-
tional file 1: Fig. S6). To identify differentially expressed 
genes (DEGs) across clusters in all three brain regions, 
we have applied four statistical tests (Wilcox [24], t test 
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[25], Bimod [26], MAST [27]) and a stringent cutoff of 
 pvaladj < 0.001. Genes that were significant across all four 
tests were then used for further downstream analysis 
(Additional file  3: Table  S4). This conservative analysis 
yielded differentially expressed genes for each cluster 
ranging from 349 to 2671 genes per cluster (Additional 
file 3: Table S4).

Identification of cell clusters that are enriched 
for constraint genes
We next aimed to prioritise clusters for downstream 
analysis by identifying those enriched for highly con-
strained genes intolerant of mutations. To identify sin-
gle-cell clusters that are regulated by constraint genes, 
we used two different approaches: i) brain critical exons 
and ii) pLI (probability of being LoF intolerant). Brain 

critical exons identify genes with exons that are both 
highly expressed and show constraint against muta-
tion accumulation, whereas the pLI score characterises 
genes in terms of their tolerance to LOF mutation. Brain 
critical exons are reported to be highly constrained in 
human brain [28]. We have constructed a brain critical 
exon database using the gnomAD mutation database and 
RNA-seq data from 196 developing human brains [29] 
from three developmental stages (prenatal, early child-
hood and adulthood) following the method described in 
our previous work [28]. Our enrichment analysis identi-
fied that differentially regulated cluster genes are signifi-
cantly enriched with brain critical genes in clusters ACC 
(2, 13, 10, 9), MTG (11, 10, 17, 16), VISP (16, 11, 8, 15). 
Brain critical exons are predominantly enriched in differ-
entially expressed cluster genes that are highly expressed 

Fig. 1 Constrained cluster analysis. A Clustering of single‑cell RNA seq data from three distinct post‑mortem neurotypical human brain regions 
(coloured green)—anterior cingulate cortex (ACC), middle temporal gyrus (MTG) and primary visual cortex (VISp). Clustering of single‑cell 
transcriptome data is shown for each region defined by the tSNE plot (tSNE1 x‑axis and tSNE2 y‑axis), and each colour represents a unique cluster. 
B Enrichment of critical exon genes for each cluster is shown. Enrichment was conducted between differentially expressed genes of a cluster 
(with unique colour horizontal line) and their overlap with pre‑computed critical exon matrix from prenatal (PN), early childhood (EC) and adult 
(AD) brain RNA seq data. Y‑axis shows the significance (‑log(p) and x‑axis shows odds ratio (OR) of critical exon gene enrichment for each cluster 
and compared between the developmental stages. C Enrichment of high pLI (> 0.90) genes across all clusters shown in radial plots. Enrichment of 
each brain region shown in unique colours and the width and height of the graph represents OR and the colour intensity represents –log(p) of the 
enrichment value



Page 4 of 16Nassir et al. Human Genomics           (2021) 15:68 

in prenatal stages compared to early childhood and adult-
hood stage (Fig. 1B, Additional file 2: Table S5). The most 
significant clusters are ACC-cluster 2 (p < 1.47 ×  10–154, 
OR = 1.74), MTG-cluster 11 (p < 3.99 ×  10–88, OR = 1.51) 
and VISP-cluster 16 (p < 1.43 ×  10–132, OR = 1.59). A 
gene-based score, pLI [30] was applied with a cutoff of 
pLI ≥ 0.9 to identify single -cell clusters that are highly 
intolerant of LOF mutations. The clusters with most sig-
nificant (see Additional file 2: Table S6) intolerant genes 
are ACC (10, 13, 9, 2), MTG (11, 10, 16, 17), VISP (16, 
11, 8, 15) (Fig.  1C). pLI is highly effective in quantitat-
ing haplo-insufficient genes [31] and our analysis showed 
that ACC-cluster 10 (p < 8.55 ×  10–106), MTG-cluster 11 
(p < 9.05 ×  10–91), and VISP-cluster 16 (p < 4.04 ×  10–122) 
were those clusters most enriched for genes that are LOF 
intolerant and haplo-insufficient. In addition, we con-
ducted replication-timing analysis as it has been reported 
that somatic mutations discovered in cancers [32, 33] 
and ASD gene mutations [34] are associated with late 
DNA replication. We found that the cluster genes are 
constrained in late replication timing compared to early 
replication (Additional file  1: Fig. S7, Additional file  4: 
Table S7).

Genes harbouring ASD de novo LOF and missense variants 
are enriched in constrained clusters
We next conducted enrichment analysis between the 
single-cell clusters and 6651 de novo missense variants 
(impacting 4017 genes) and 1087 de novo LOF variants 
(impacting 852 genes) derived from our curation of the 
ASD mutational landscape as described above (Addi-
tional file  4: Table  S8). Using the GeneOverlap package 
in R, we observed that ACC (10, 9,13), MTG (10, 11, 6) 
and VISP (16, 11, 8) clusters were most significantly 
enriched (Fig. 2A-C) for genes harbouring ASD LOF and 
missense variants (p < : ACC (1.55 ×  10–09, 1.89 ×  10–09, 
1.16 ×  10–08), MTG (1.31 ×  10–09, 3.11 ×  10–09, 
6.74 ×  10–08), VISP (5.23 ×  10–11, 6.40 ×  10–11, 
6.04 ×  10–09)). Interestingly, the de novo ASD LOF vari-
ant enriched clusters were also those clusters that we 
have found to be significantly constrained (based on 
enrichment of high pLI genes and critical exons). In addi-
tion, we have conducted enrichment analysis on three 
additional sets of genes that harbour i) multiple de novo 
LOF ii) multiple de novo missense and iii) multiple de 
novo LOF or missense variants in ASD. We observed the 
initial LOF enriched clusters ACC (10, 9, 13), MTG (10, 

Fig. 2 Enrichment of ASD missense and LOF variant genes across non‑neuronal clusters of 3 brain regions—ACC (anterior cingulate cortex), MTG 
(middle temporal gyrus) and VISp (primary visual cortex). A Enrichment of ASD missense variants across clusters. The y axis here represents clusters, 
x axis odds ratio, the size of the circle by overlap gene size and the gradient represent p‑value. Overlap size varies from 60 to 720, B Enrichment 
of ASD LOF variants across clusters. C LOF enriched clusters that are constrained are highlighted in red. D Scatterplot visualisation of cells after 
principal‑component analysis and t‑distributed stochastic neighbour embedding (tSNE), coloured by Seurat clustering and annotated by major cell 
types (neuron, oligodendrocytes, astrocytes, microglia, OPC) according to expression of known marker genes. We were unable to assign cell type 
identity for clusters 0, 1, 2, 6, 11, 15 (ACC), 0, 1, 2, 3, 12, 13 (MTG) and 0, 1, 2, 4, 6 (VISp) with the available set of known cell type markers. E Feature 
plot of neuronal bias gene, SCN2A across ACC, MTG and VISp regions. F Feature plot of neuronal bias gene, GRIN2B across ACC, MTG and VISp 
regions
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11, 6), VISP (16, 11, 8) are also highly enriched (see Addi-
tional file 1: Fig. S8, Additional file 4: Table S9 for enrich-
ment) for these three additional sets of genes. These 
clusters are chosen for further downstream analysis.

Previous studies implicated that fragile X mental 
retardation protein (FMRP) genes are found to harbour 
clinically relevant de novo variants in ASD, and the phe-
notypic overlaps between fragile X and ASD are also 
well documented [35]. The phenotypic and genotypic 
overlap is also observed with epilepsy and intellectual 
disability. We conducted enrichment analysis of FMRP 
protein targets, epilepsy and ID LOF gene lists (Addi-
tional file  3: Table  S10) across clusters and observed 
enrichment in the same highly constrained clusters found 
to be enriched for genes harbouring de novo ASD LOF/
missense variants, hereafter referred to as ‘ASD LOF 
enriched clusters’ (Additional file 4: Table S11). Of note, 
the housekeeping genes (negative control) (Additional 
file 3: Table S10) were not enriched in any of the clusters 
across brain regions. Further, the enrichment analysis 
of pathway genes involved in autism spectrum disorder 
(Additional file  3 and Additional file  4: Table  S10, S12) 
was also carried out.

Subtypes of glial cells are enriched with ASD de novo LOF 
mutated genes
Classifying single-cell transcriptomic clusters in terms 
of cell identity is complex; consequently, to assign clus-
ter identity we have used two independent approaches. 
First, we used an unbiased approach to identify cell types 

enriched in each cluster based on their molecular signa-
tures employed by a set of known marker genes (Fig. 2D). 
For our analysis, we used 865 known gene mark-
ers curated from literature [36–38] (Additional file  3: 
Table  S13). Initial analysis on two selected well-studied 
ASD genes (SCN2A, GRIN2B) known to harbour patho-
genic de novo LOF variants that are involved in critical 
neuronal inhibitory and excitatory functions confirmed 
their enrichment in various neuronal subtypes (Fig.  2E, 
F).

We next conducted enrichment analysis for the entire 
de novo LOF mutated genes. In this way, we identified 
that the top ASD de novo LOF enriched clusters are 
characterised by a significantly higher expression of non-
neuronal marker genes for astrocytes, oligodendrocytes, 
microglia and oligodendrocyte progenitor cells (OPC) 
compared to neurons. We observed that top ASD de 
novo LOF cluster genes were over-represented among 
non-neuronal cell markers (Fig. 3A, Additional file 1: Fig. 
S9). Also, LOF genes had higher composition of known 
non-neuronal marker genes compared to neuronal 
marker genes (Additional file 3: Table S14).

Secondly, we further looked at the composition of the 
top 20 DE genes, which represent the primary regulatory 
molecular machinery that defines each cluster. Our anal-
ysis observed that the top 3 significant clusters for each 
brain region included in our study were composed of 
non-neuronal cells, i.e. astrocytes, oligodendrocytes and 
microglia marker genes (Fig.  3B, Additional file  1: Fig. 
S10). We further looked for the evidence from expression 

Fig. 3 Expression of known marker genes in clusters of 3 brain regions, ACC (anterior cingulate cortex), MTG (middle temporal gyrus) and VISp 
(primary visual cortex). A Boxplot representing the average expression of cluster genes related to specific cell types (known marker genes); box 
plots showing median, interquartile range (IQR) with whiskers adding IQR to the 1st and 3rd quartile. Y‑axis represents normalised gene expression, 
x‑axis represents known marker genes of brain cell types, oligodendrocytes, astrocytes, OPC, microglia and neurons. B Donut plot displaying 
the composition of top 20 DE genes in comparison to known marker gene list (yellow‑astrocytes, orange‑microglia, pink‑oligodendrocytes, 
grey‑others). C Feature plot to visualise the expression of known marker gene related to specific cell types on tSNE plot. Expression of astrocytes 
(ADGRV1), oligodendrocytes (MOG) and microglia (P2RY12/ CX3CR1) across different clusters are also shown
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of well-characterised non-neuronal marker genes for 
primary brain cell types. Our analysis found that multi-
ple non-neuronal marker genes have restrictively high 
expression in our selected top three ASD de novo LOF 
enriched clusters (Fig.  3C). Based on these three lines 
of evidence, we observed that a subset of ASD LOF 
enriched constrained clusters were non-neuronal, i.e. 
comprised astrocytes, oligodendrocytes, and microglia. 
As such, this indicates that a subgroup of ASD-impli-
cated genes is preferentially involved in non-neuronal 
brain processes, thereby earmarking these non-neuronal 
elements in the aetiology of ASD among those individu-
als harbouring such variants. Hierarchical clustering of 
cell type depicting lineage relationship based on DEGs 
was performed using Slingshot [39] (Additional file 1: Fig. 
S11). Venn diagrams depicting the overlap between genes 
among all clusters across 3 brain regions were also plot-
ted (Additional file 1: Fig. S12).

Spatiotemporal characterisation of ASD LOF enriched 
clusters
For further characterising these non-neuronal ASD 
LOF enriched clusters, we examined the spatiotempo-
ral dynamics across three developmental periods (pre-
natal, early childhood and adulthood) and in 16 brain 
regions. We observed the strongest expression in the 
prenatal developmental stage (Fig.  4A, B, Additional 
file 5: Table 15). Further, critical genes in the ASD LOF 
enriched clusters showed significant expression in DFC 
(p < 2.88 ×  10–277) and V1C (p < 4.64 ×  10–214) brain 
regions, both known to be critical for cognitive func-
tion. The association of DFC and V1C is consistent in all 
top ASD LOF enriched clusters derived from three brain 
regions. In addition, network analysis identified that syn-
aptic vesicle, ion activity and cell regulation are signifi-
cantly enriched and common among all three ASD LOF 
clusters derived from the three brain regions (Fig.  4C, 
Additional file 1: Fig. S13, Additional file 6: Table S16).

Replication of conserved expression pattern of ASD LOF 
genes in non‑neuronal cell types
For replicating our findings, we examined additional 
human and mouse brain single-cell transcriptomes. 
Unlike our discovery analysis using single-cell tran-
scriptomics data, this human brain single-cell dataset 
used pre-sorted (based on markers) brain cells [40]. We 
found that the top ASD de novo LOF enriched clusters 
were characterised by high expression in non-neuronal 
cells (astrocytes: p < 4.01 ×  10–03; oligodendrocytes: 
p < 1.22 ×  10–04) (Fig. 5A, Additional file 1: Fig. S14). The 
data also showed neuronal expression for other de novo 
ASD LOF enriched clusters consistent with our previ-
ous observation. We also analysed the expression of top 

ten-fold change genes (Additional file 3: Table S4) across 
clusters (Fig. 5B, Additional file 1: Fig. S15) and observed 
higher expression in non-neuronal cells compared to 
neurons. The mean expression of ASD LOF genes was 
also plotted, which shows higher expression within non-
neuronal marker genes compared to neuronal markers 
(Additional file 1: Fig. S16).

To assess the robustness of our results and to exam-
ine evolutionary conservation across other mammals, 
we used a dataset that identified broad categories of cell 
types from mouse brain regions [41]. Our analysis con-
firmed that genes from the ASD de novo LOF enriched 
clusters show significant expressed in astrocytes (Fig. 5C, 
Additional file 1: Fig. S17). A second independent mouse 
brain single-cell transcriptome dataset [42] also showed a 
similar pattern (Additional file 1: Fig. S18).

We further used cell type-specific gene expression data 
from another human brain [43] dataset to quantify mean 
expression of the top ten DEGs from each cluster across 
fetal and adult astrocytes. We consistently observed that 
top ten fold change genes from our previous analysis 
were more active in adult astrocytes, postnatally after 
the neurons mature (Additional file 1: Fig. S19). Enrich-
ment of ASD LOF genes across cell types of cerebrum 
and cerebellum in fetal brain [44] shows expression in 
non-neuronal cells (microglia, oligodendrocytes) and 
unipolar brush cells (Fig. 5D). We thus observed distinct 
cell type association between ASD risk genes and glial-
specific gene expression throughout development. These 
results not only support the genetic evidence indicating 
that non-neuronal cells may play a role in ASD, but also 
indicate involvement of non-neuronal cell type-related 
disease aetiology of ASD.

Our results suggest a subset of ASD genes have signifi-
cant non-neuronal bias in expression. By way of exam-
ple, both KANK1 and PLXNB1 showed very restricted 
expression in non-neuronal cell types in all three brain 
regions. Both KANK1 and PLXNB1 are shown to har-
bour multiple LOF variants in our curated ASD muta-
tion data set. We have identified additional 2 de novo 
LOF variants, 14 LOFs with unknown inheritance and 4 
de novo missense from 11 ASD cases for KANK1 from 
other autism genetic research laboratory data (including 
MSSNG database) (Fig. 6A, Additional file 3: Table S17). 
Similarly, for PLXNB1, we have identified 5 de novo LOF 
variants, 2 LOFs with unknown inheritance and 10 de 
novo missense in 8 ASD cases (Fig. 6A, Additional file 3: 
Table S18). There is significant enrichment of frameshift 
mutations in PLXNB1 (p = 0.0143) and splice site muta-
tions in KANK1 (p = 0.0012, Additional file 3: Table S19) 
compared to control (gnomAD). In addition, we looked 
into other databases (Clinvar entries, DECIPHER) to 
accumulate more variants from cases (Fig. 6A, Additional 
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file 3: Tables S17, S18). We found that 24 of 115 KANK1 
and 5 of 35 PLXNB1 variants are damaging mutations 
(based on rare variant ACMG guidelines). Further anal-
ysis on CNV shows enrichment of de novo CNVs for 

both PLXNB1 and KANK1 gene within ASD and neu-
rodevelopmental disorder cases (Additional file  1: Fig. 
S20, Additional file  3: Table  S17, S18). Both KANK1 
and PLXNB1 have shown restricted high expression in 

Fig. 4 Spatiotemporal association analysis of critical exons in cluster genes. A Spatiotemporal heat maps (with the locations of brain tissue samples 
depicted on the medial surface) include information on 16 brain regions that were outlined in 3 developmental human brain stages (prenatal, early 
childhood and adult). Enrichment of critical exons show highest expression in prenatal stage and DFC/V1C region. For each brain region, (AMY, 
amygdaloid complex; CBC, cerebellar cortex; V1C, primary visual cortex; STC, posterior (caudal) superior temporal cortex; IPC, posterior inferior 
parietal cortex; A1C, primary auditory cortex; S1C, primary somatosensory cortex; M1C, primary motor cortex; STR, striatum; DFC, dorsolateral 
prefrontal cortex; MFC, medial prefrontal cortex; VFC, ventrolateral prefrontal cortex; OFC, orbital frontal cortex; MD, mediodorsal nucleus of 
thalamus; ITC, inferolateral temporal cortex; HIP, hippocampus), the colour gradient reflects the association Odds ratio between expression levels 
and the burden of rare missense variants. B Pathway network analysis in ASD LOF enriched clusters drawn using Cytoscape. Colour gradient and 
size of nodes are represented by pvalue and Odds ratio, respectively. Top 3 pathway clusters are highlighted in red
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astrocytes in both of our human single-cell data (Fig. 6B, 
Additional file  1: Fig. S21). This pattern of restricted 
astrocyte expression for both genes was found to be sig-
nificant compared to neuron expression in human brain 
[40] and multiple mouse brain single-cell transcriptome 
data [41, 42] (Fig. 6C and Fig. 6D, Additional file 1: Figs. 
S22, S23, S24). Further, these critical genes for ASD were 
highly expressed in fetal astrocytes compared to adult 
astrocytes (Additional file 1: Fig. S25). Expression of criti-
cal genes, KANK1 and PLXNB1 across cell types of cere-
brum and cerebellum in fetal brain [44] shows expression 
in non-neuronal cells (Fig. 6E, Additional file 1: Fig. S26). 
KANK1 and PLXNB1 were expressed in non-neuronal 
cell types (Additional file 1: Fig. S27) in other single-cell 
datasets too [45, 46].

Discussion
In this study, we leveraged large-scale transcriptomic 
data, including human and mouse brain single-cell tran-
scriptomes, and systematically integrated ASD mutation 
data from published ASD sequencing projects to examine 
the association between these mutations and cell type. 
Although much of the literature has emphasised the role 
of neurons [47, 48] in neurodevelopmental disorders, we 
report robust evidence for an association between non-
neuronal cell types (astrocyte and oligodendrocyte) and 
a subgroup of ASD de novo LOF variants. The observed 
restricted non-neuronal cell expression among ASD can-
didate genes suggests molecular evidence that deficits in 
non-neuronal function are implicated in ASD.

Our results showed robust association of non-
neuronal cell types with de novo ASD LOF variants. 
Moreover, this association was found to be conserved 
in multiple rodent datasets. Our non-neuronal cell 
clusters are small in size, but the association was repli-
cated across clusters in all three brain regions studied, 
particularly in view of their potential role in neurode-
velopmental disorders more generally as discussed sub-
sequently. Moreover, the small size of the clusters is 
perhaps unsurprising given that the Allen Brain Atlas 
has neuronal bias with approximately 90% neuronal 
cells. Our analysis also revealed that DEGs in the large 
single-cell clusters are also enriched for de novo ASD 
LOFs; are neuronal in identity; and that the size of 
these clusters is larger compared to the top three ASD 

de novo LOF enriched clusters. Overall enrichment 
analysis revealed that ASD de novo LOF mutated genes 
have molecular aetiology consisting of multiple neu-
ronal subtypes and a molecular subtype of ASD restric-
tively expressed in non-neuronal brain cells. Given 
our results, we hope there is now an impetus to look 
beyond neuronal cells in the pathogenesis of ASD.

Our spatiotemporal analysis of the top brain cell type 
clusters shows DEGs are highly active in prenatal stage 
and within DFC and V1C regions of the brain. The pre-
natal molecular origin of ASD has been confirmed in 
multiple independent studies [12, 28, 49]. ASD is often 
associated with early brain overgrowth, particularly 
involving the prefrontal cortex [50], which plays a cen-
tral role in mediating working memory [51] and con-
text-dependent prioritisation of off-task thought [52]. 
Visual hypersensitivity is a common sensory deficit in 
ASD, which may impact behaviour and learning [53]. 
Hypersensitivity to visual stimuli observed in ASD is 
caused by altered connectivity in visual pathways and 
attention networks, thereby contributing to social com-
munication vulnerabilities [54]. Gaze aversion and lack 
of joint attention, core diagnostic elements of severe 
ASD, are both mediated by incoming visual information 
[55]. The enrichment of ASD mutations in V1C clusters 
therefore aligns with the early clinical phenotype, and 
our data therefore support the need to investigate V1C 
and its functional connections with these early clinical 
traits observed in ASD patients. Similarly, DFC path-
ways are often impacted in ASD, either in the context 
of its comorbidity with ADHD or its wider association 
with executive dysfunction. ADHD, a disorder of atten-
tion and behavioural control, is largely mediated by DFC 
pathways and is diagnosed in more than 40% of children 
with ASD [56]. Moreover, prefrontal cortical regions have 
always been strongly implicated in ASD in relation to 
both their role in decision-making and social behaviour, 
and the patterns of impairments demonstrable by imag-
ing [57]. To identify the molecular convergence, we have 
conducted cluster specific pathway enrichment analysis. 
Interestingly, our results on LOF mutated genes show 
major biological pathways enriched for the top clusters 
that include synaptic vesicle, transmembrane ion activ-
ity networks, development and metabolic processes, cell 
growth and actin cell regulation.

Fig. 5 Replication of association between cluster genes and cell type in other validation datasets. A Fold change (y axis) of top cluster genes 
intersected with LOF genes, non‑neuronal genes, known marker genes and housekeeping genes across ACC, MTG and VISp brain regions. B 
Cluster‑cell type associations (plotted by mean expression (grey) for the 10 most fold change (blue) genes on y axis in 3 significant clusters across 
oligodendrocytes, astrocytes, OPC, microglia, neurons among ACC, MTG and VISp brain regions. C Mean expression (grey) of 10 most fold change 
(yellow) genes on y axis in 3 significant clusters across oligodendrocytes, astrocytes, OPC, microglia, neurons among ACC, MTG and VISp brain 
regions. D Enrichment of ASD LOF variant genes across cell types of cerebrum and cerebellum regions of fetal brain. The y axis here represents cell 
types, x axis odds ratio, the size of the circle by overlap gene size and the gradient represent p value

(See figure on next page.)
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Fig. 5 (See legend on previous page.)
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Unlike neurons, the glial cells (including astrocytes 
and oligodendrocytes) do not transmit signals, but they 
constitute a ‘supportive’ environment to chaperon the 
neurons and shape the neuronal network [58, 59]. It 
is unsurprising, therefore, that their dysfunction has 
been described in brain diseases such as schizophrenia, 
ASD and Alzheimer’s Disease [60–62]. Astrocytes, for 
example, are the most abundant cell type in the central 
nervous system and are involved in a wide variety of 
specific functions, including axonal guidance, response 
to inflammation, wound healing and the construction 
of the blood brain barrier [43, 63]. Moreover, the func-
tional neural circuit involves numerous types of cells, 
with astrocyte as one of the key cell types for synapse 
formation and function [64, 65]. Similarly, the myelin 
forming oligodendrocyte has recently been shown to 
express post-synaptic proteins. Glial cells (astrocytes 
and microglia) are vital in modulating neural con-
nectivity during development, and glial dysfunction 
has been hypothesised to be a key contributor to the 
development of ASD [66]. However, to date no system-
atic study has been undertaken to elucidate the role of 
genes regulating glial cells in either ASD or related neu-
rodevelopmental phenotypes.

Several studies have already identified aberrant non-
neuronal mediated process in ASD. For example, it was 
previously reported that microglial activation in ASD was 
associated with a neuron-specific reaction in the dorso-
lateral prefrontal cortex [67]. This is consistent with the 
findings that abnormal activation of microglia and astro-
cytes occur in multiple brain regions of autistic patients 
[68–70]. A recent study reported that an elevated syn-
thesis of proteins in microglia causes social impairments, 
cognitive deficits and repetitive behaviour in male mice, 
each an important component of the ASD phenotype 
[71]. Since immune molecules and cells such as micro-
glia play a role in synaptic development and function 
[72], the observed immune up-regulation may be related 
to abnormal ongoing plasticity in ASD brain [73]. Tran-
scripts upregulated in autism were preferentially involved 
in immune functions, while transcripts downregulated 
in autism were involved in neural functions, including 
calcium signalling and long-term potentiation pathways 
[74]. These studies, therefore, provide important clues 
to the role played by non-neuronal cells in disease, but 

much remains to be learned about their involvement in 
the pathophysiology of ASD and related disorders.

Considering the genes that underlie these non-neu-
ronal processes, by applying single-cell transcriptom-
ics it is now possible to find cell type-specific roles for 
genes. The largest published autism RNA-seq (from bulk 
tissues) study of post-mortem brain tissue found evi-
dence for cortex-specific differential gene expression and 
alternative splicing events, with enrichment for genes 
expressed in microglia and astrocytes [9]. Our study 
showed that such glial cell type regulatory genes are also 
harbouring de novo LOF variants in a subgroup of ASD 
individuals.

We further validated these results using gene expres-
sion databases with complementary brain cell types, 
where cells were pre-sorted based on known markers. 
Validation of non-neuronal expression bias of cluster 
genes intersected with LOF genes in mouse indicates 
broad conservation of core brain cellular functions across 
species. We further identified few non-neuronal bias 
genes (PLXNB1, KANK1, TANC2, GLUL) from our study 
which were among the top fold change genes across three 
brain regions. Multiple variants in PLXNB1 and KANK1 
in ASD cases were reported and these genes were promi-
nently expressed in astrocytes compared to neurons in 
both human and mouse. Transcriptional profiling experi-
ments indicated that PLXNB1 is expressed in both neu-
rons and glial cells in the cerebral cortex, with the highest 
expression found in glia [41, 75]. Furthermore, this gene 
is expressed in inhibitory and excitatory neurons and glia 
in the developing hippocampus [76]. KANK1 is reported 
to be associated with cerebral palsy, and many CP cases 
are also usually reported to have autism and other NDD.

Since ASD research so far has principally been focused 
on neurons and not the non-neuronal cell types, future 
studies should now examine the role of other cell types 
in identifying disease mechanisms of ASD. Here, we 
have provided evidence that different functions in differ-
ent cell types may be dysregulated in ASD; investigating 
functional interactions between ASD candidate genes 
in different cell types in normal human brains may pro-
vide new insight into the genetic heterogeneity of ASD. 
Specifically, we suggest that different cell types may play 
unique roles in the pathogenesis of the disorder. Also, 
cell clusters driving the association of ASD appear to be 

(See figure on next page.)
Fig. 6 Genes impacted with clinically relevant mutations with restricted non‑neuronal brain cell expression. A Loss‑of‑function (LOF) (red text), de 
novo/rare missense variants (blue text), ClinVar variants (green text) and their genomic location within the exons (blue squares) of non‑neuronal 
genes (KANK1 and PLXNB1). Detailed variant information is provided in Additional file 3: Tables 17, 18. B Feature plot showing restrictive expression 
(scale red to white) of KANK1 and PLXNB1 across single‑cell clusters from human brain. C Mean expression (grey) and fold change (red) of KANK1 
and PLXNB1‑ human primary brain cell types (oligodendrocytes, astrocytes, oligodendrocyte progenitor cell (OPC), microglia, neurons). D Mean 
expression (green) and fold change (red) of KANK1 and PLXNB1‑ mouse primary brain cell types (oligodendrocytes, astrocytes, neurons). E 
Expression (TPM) of KANK1 and PLXNB1 across cell types of cerebrum and cerebellum regions of fetal brain



Page 11 of 16Nassir et al. Human Genomics           (2021) 15:68  

Fig. 6 (See legend on previous page.)



Page 12 of 16Nassir et al. Human Genomics           (2021) 15:68 

similar to those of fMRI/epilepsy. Although each of these 
conditions has been previously linked to ASD, our find-
ings might help further define an emerging molecular 
subtype of ASD.

As in oncology, where the identification of cancer 
subtypes enabled the development of effective targeted 
treatments [77–79], the identification of molecular ASD 
subtypes is expected to result in similar opportunities for 
therapeutic development. Overall, the work shown in the 
present study represents a proof of concept for the value 
of using massive amounts of multimodal data to push 
the boundaries of existing knowledge, thereby moving us 
closer to precision medicine for ASD.

Conclusions
In summary, our integrative approach, incorporating 
multi-dimensional transcriptomic data from different 
sources, has facilitated an entirely novel understand-
ing of the potential brain architecture in ASD. First, we 
observed that genes forming a natural cluster tend to 
have shared functions in different brain regions. And sec-
ondly, we showed that non-neuronal cell types may be 
implicated in a molecular subtype of ASD. In conclusion, 
by using an integrative framework, we were able to exam-
ine the convergence of clinical mutations onto specific 
disease-related pathways. The robust analytical frame-
work provided in this work might be used to uncover 
functional modules for other genetic diseases, improving 
their risk assessment. The convergence of molecular sub-
types of ASD risk genes to brain cell types and pathways 
will be crucial for the future development of more effec-
tive ASD diagnosis and therapeutics by targeting relevant 
cell types associated with ASD.

Methods
Data collection
The data were compiled from 26 published cohort studies 
to extract reported mutations for further analysis. Stud-
ies include reported mutations from MSSNG, Autism 
Sequencing Consortium (ASC), Simon Simplex Con-
sortium (SSC) and other studies with population cohort 
reports on autism spectrum disorder that applied exome, 
whole genome or targeted sequencing approaches. This 
resulted in a total of 169,580 genetic mutations/variants 
reported by all the articles that include 156,688 de novo 
mutations/variants impacting autism candidate genes. 
These variants were reported from 40,122 cases with 
ASD collectively from all the exome/genome sequencing 
cohort studies. A summary of all key information from 
26 studies is listed (Additional file 2: Table S1).

Single‑cell transcriptome data
We obtained publicly available single-cell RNA-seq data 
from Allen Brain Atlas (https:// portal. brain- map. org/ 
atlas es- and- data/ rnaseq), which were created from intact 
nuclei derived from three brain regions, viz. ACC (Ante-
rior Cingulate Cortex), MTG (Middle Temporal Gyrus) 
and VISP (Primary Visual Cortex). 8 human tissue donors 
ranging in age from 24 to 66 years were analysed (ACC-
7,283 nuclei; MTG-15,928 nuclei; VISP-8,998 nuclei). 
Nuclei were sampled from postmortem and neurosur-
gical (MTG only) donor brains and expression was pro-
filed with SMART-Seq v4 or 10× Genomics Chromium 
Single-Cell 3’ v3 RNA-sequencing. Raw read (fastq) files 
were aligned to the GRCh38 human genome sequence. 
For alignment, Illumina sequencing adapters were 
clipped from the reads using the fastqMCF program. 
After clipping, the paired-end reads were mapped using 
Spliced Transcripts Alignment to a Reference (STAR) 
using default settings. Quantification was performed 
using summerizeOverlaps from the R package Genomi-
cAlignments. Expression levels were calculated as counts 
per million (CPM) of exonic plus intronic reads. Intronic 
and exonic read counts were summed, and log2-trans-
formed expression was centred and scaled across nuclei.

Dimensionality reduction, clustering and t‑SNE 
visualisation
The filtered single-cell RNA seq data from ACC, MTG 
and VISP regions were used for unbiased clustering using 
Seurat v.3 [23]. Seurat is an R toolkit designed for QC, 
analysis and exploration of single-cell transcriptomic 
analysis. Highly variable genes (2000 features) were 
found using Seurat object FindVar and these were scaled 
up after applying linear transformation regressing on 
the percentage of mitochondrial reads (Additional file 1: 
Fig. S5). Principal component analysis was performed to 
reduce the dimensionality of the data by RunPCA using 
the highly variable features. Elbow Plot was used to iden-
tify the number of significant PCA for downstream analy-
sis by localising the last PC before the explained variance 
reaches plateau (Additional file 1: Fig. S5). First 24, 22 and 
24 PCs for ACC, MTG and VISP regions, respectively, 
were used as input in FindNeighbors to construct KNN 
graphs using PCs. Clusters were created using FindClus-
ters (resolution = 0.8, 0.5, 0.6 for ACC, MTG and VISP 
regions, respectively). To visualise nuclear transcriptomic 
profiles in two-dimensional space, t-distributed stochas-
tic neighbour embedding (t-SNE) [80] was performed 
with the selected PCs and perplexity = 30. Further, Dim-
Plot using reduction = tsne was plotted (Fig. 1A).

https://portal.brain-map.org/atlases-and-data/rnaseq
https://portal.brain-map.org/atlases-and-data/rnaseq
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Gene set enrichment
For ASD de novo mutated genes, we have created mul-
tiple sets of genes, that includes i) all genes impacted by 
de novo LOF variants in ASD ii) multiple de novo LOF 
genes ii) multiple de novo missense and iii) multiple de 
novo or missense (union) variants in ASD. In addition, 
we curated all FMRP1 targeted gene list [81], epilepsy 
and intellectual disability genes from SFARI. Only unique 
genes were retained for each gene set for enrichment 
analysis. We have used control set (housekeeping genes) 
with non-brain expressed genes (non-critical exon) 
and low pLI score (0.05). We tested whether different 
gene sets were enriched in clusters using GeneOverlap 
package in R and used Bonferroni method for multiple 
corrections.

Cluster annotation to define cell identity
We used known marker genes to map clusters to cell 
types, minimising potential bias due to differential 
expression of individual genes. We determined the 
brain cell types in each of the clusters by evaluating the 
expression of known marker genes for neurons, astro-
cytes, oligodendrocytes, microglia, OPC (Additional 
file 3: Table S13), obtained from literature by performing 
unbiased gene marker analysis. Differentially expressed 
genes were calculated by using four tests (Wilcox, t test, 
Bimod, MAST) in each cluster and were used to analyse 
cell type markers. Cluster genes overlapping with marker 
genes were used for further analysis. We used boxplot to 
visualise the average expression of genes related to spe-
cific cell types, donut plot to display the composition of 
top 20 DE genes and Featureplot to visualise the expres-
sion of a marker gene related to specific cell type. Clus-
ters were annotated based on the Boxplot, Dotplot and 
Featureplot.

Spatiotemporal expression data from human brain
We downloaded normalised RNA-seq data for spatiotem-
poral expression profiles of human brains from the Brain-
Span database (http:// www. brain span. org/ static/ downl 
oad. html). The data set used consisted of spatiotempo-
ral expression profiles from 42 donors across 26 regions 
from the BrainSpan database [82]. Those regions found in 
more than 2 donors were retained (16 regions) and a total 
of 15,55,39,169 brain expression data point was used for 
analysis. Donors were selected so that each developmen-
tal period included at least two age- and sex-matched 
donors. The developmental periods were categorised into 
three groups: prenatal (8 to 37  weeks post-conception), 
early childhood (10  months to 15  years) and adulthood 
(> 17 years). For each donor, we obtained expression data 
from 16 brain regions within the 3 developmental peri-
ods. Illumina Genome Analyser II’s (GAIIx) was used 

for RNA sequencing, reads were aligned and mapped to 
Reference genome (Gencode v10), and normalising was 
carried out according to sequencing depth and size of the 
element based on the RSEQtools framework [83]. The 
expression level of genes, exons and spike-in RNAs were 
measured in the commonly used units of RPKM (reads 
per kilobase of exon model per million mapped reads) 
[84].

Constraint single‑cell brain cluster analysis
Critical exons (CE) are a measure that computes exon 
level burden of non-synonymous mutation and brain 
expression [28]. CE computes the correlation between 
mutation burden and brain expression to identify exons 
that are conserved for mutation accumulation and high 
in brain expression. For CE computation, for each exon 
we have computed exon level expression from 42 brain 
spatiotemporal transcriptomic samples (as described 
before) and used gnomAD to compute non-synonymous 
mutation burden normalised by the exon length. Next, 
we used pLI score, a second method to identify con-
straint single-cell brain cluster genes. To quantify statis-
tical significance, we have used R package and applied 
proportion test and Fisher’s exact t-test for CE and pLI 
enrichment, respectively.

Pathway analysis
Analysis of the genetic data in the mutation database 
created was subsequently done by biological pathway 
analysis to identify the biological pathways affected by 
the mutations in the database. The analysis utilised the 
KEGG pathway database which is a collection of manu-
ally drawn pathway maps representing the current 
knowledge on the molecular interaction, reaction, and 
relation networks (http:// www. genome. jp/ kegg/ pathw 
ay. html) and GO database (http:// geneo ntolo gy. org/). 
In this analysis, we assessed the overlap between the 
mutated genes in our database and the KEGG-GO path-
ways. Pathway gene sets less than 50 and greater than 
1000 were excluded. If an overlap between our dataset 
and a KEGG-GO pathway is significant based on the 
FET, it is said to be enriched; hence, we evaluated the 
enrichment of genes in KEGG pathways against a com-
mon background consisting of all the genes in the data 
set. The pathways are identified by their name and unique 
KEGG ID. The significantly enriched set (Fisher’s exact 
test, p < 1.0 ×  10−3 and FDR < 0.01) was used for network 
construction. Cytoscape (https:// cytos cape. org/) which is 
a visualisation tool was utilised to map and construct a 
network of the biological pathways associated with ASD. 
The networks were plotted with colour gradient and size 
of node representing p-value and odds ratio, respectively. 
GSEA [85] was used for functional enrichment analysis.

http://www.brainspan.org/static/download.html
http://www.brainspan.org/static/download.html
http://www.genome.jp/kegg/pathway.html
http://www.genome.jp/kegg/pathway.html
http://geneontology.org/
https://cytoscape.org/
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Cell type‑specific gene expression dataset for validation
We have used independent single-cell transcriptome 
datasets from human and mouse brain regions to repli-
cate our findings. Single-cell RNA sequencing data of 466 
cells with known (sorted using known primary brain cell 
markers) cell type (neurons-131, astrocytes-62, oligo-
dendrocytes-38, microglia-16, OPC-18) were used [40] 
to study the cell fate of cluster genes. We filtered out any 
genes which were not expressed in more than 75 per-
centiles of the cells and computed the mean expression 
for each gene in gene sets of interest (LOF genes, cluster 
genes intersected with LOF genes) across cell type from 
the expression data. Fold change was calculated with 
respect to neurons and the expression of top 10 most fold 
change genes were also plotted.

The replication datasets were a mouse study that 
sampled purified neurons, astrocytes, oligodendrocyte 
precursor cells, oligodendrocytes and microglia from 
mouse cerebral cortex [41]. We used the pre-computed 
mean expression data and plotted the expression of top 
10 most fold change genes. Other datasets used were 
nuclear transcriptional data of the nervous system using 
flow sorting of genetically labelled nuclei [42], RNA-Seq 
of human astrocytes [43]. For quantifying enrichment 
of ASD LOF variants across brain cell types, DE genes 
from 44, 428 cells of cerebellum and 39,495 cells of cer-
ebrum (fetal) were used [44]. Fetal brain data collected 
from 59 samples were sequenced using sci-ATAC-seq3, 
and gene expression data collected on an overlapping set 
of tissues were leveraged to annotate cell types. We used 
pre-computed gene expression data and plotted the mean 
expression of genes across brain cell types. Student’s 
t-tests were used to compare the mean expression and 
fold change, and Fisher’s exact test was used to examine 
the association.
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